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Some exact results for moments of 2D directed animals

Andrew Conway†
Department of Mathematics, University of Melbourne, Parkville 3052 Australia

Received 19 February 1996

Abstract. Using computer enumerations and the algebraic approximant method of series
analysis, several new exact results have been found for moments of width, perimeter and loops
for directed animals on the square and triangular lattices. A proof usingq-series is given for
exact solutions for widths on both the square and triangular lattices.

Exact properties of animals (connected clusters of sites on some lattice) are poorly
understood in even two dimensions. Directed animals (e.g. figure 1) are better understood.
They add the restriction that each site other than a given base site is in a preferred direction
of some site on the animal. Dharet al [1] used a computer to enumerate the total number of
directed animals on the square, triangular and honeycomb lattices, and discovered a simple
expression for the generating function on the square and triangular lattices which was later
proved [2] by an equivalence with the hard square lattice gas problem, followed by other
proofs (e.g. [3–6]). There has also been largely unsuccessful work to find exact results on
the honeycomb and other lattices, and for bond animals and varieties of trees. A solution
on a variety of the decorated lattice was found in [7] and proved in [8].

As well as counting the number of these animals by sites, other properties are interesting.
Duarte [9, 10] looked at the average perimeter, several people looked at percolation (e.g.
[11, 12]) and longitudinal [13–16] and lateral [13, 15, 17] radii of gyration.

In this paper the series for the moments of various properties have been significantly
extended on the square and triangular lattices, and some exact results have been found.
The algorithm used is a generalization of the algorithm used in [7] which was based on the
dynamic programming algorithm in [1]. The series were analysed with algebraic [18] and
differential [19] approximants.

1. Nomenclature

In this paper, variables for which the moments refer to per-site values are lower case letters;
variables for which the moments refer to animal values are upper case letters. A superscript
in square brackets gives the moment in question. If a subscriptn is present, the variable
refers to themeanover all animals withn sites. If no subscript is present, one is referring
to the quantity evaluated for a particular animal. The total number of animals withn sites is
cn. One then usesW for width, L for length,H for number of loops, andP for perimeter.

† E-mail address: arc@mundoe.maths.mu.oz.au
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Figure 1. An example directed animal on a square lattice (broken lines) with the length (preferred
direction) and width axes marked. For clarity, unoccupied sites are not drawn.

Using this notation, ifA is an animal,s is a site, and width(s) is the width of the single
site s,

W [m](A) =
( ∑

s∈A
width(s)

)m

(1)

w[m](A) =
∑
s∈A

(width(s))m (2)

w[m]
n = 1

cn

∑
|A|=n

w[m](A) (3)

W [m]
n = 1

cn

∑
|A|=n

W [m](A). (4)

Trivially, w[1] = W [1] for all properties.
In figure 1, the given animal has the following properties.
• Area (number of sites) isn = 10.
• Perimeter (number of unoccupied sites where one could add a site without breaking

the directed animal requirements) isP [1] = 8 (aboveb, e, g, j , f , and to the right ofj , i,
andh).

• Squared perimeter isP [2] = 82 = 64.
• Number of loops isH [1] = 2 (d andj ).
• Squared number of loops isH [2] = 22 = 4.
• Length l[1] = L[1] = 25 (0 froma, 1 from b andc, 2 from d andf , 3 from e andh,

4 from g and i and 5 fromj ).
• Squared length isl[2] = 85 (the sum of the squares of the previous contributions).
• Squared animal length isL[2] = 252 = 625.
• Width is w[1] = W [1] = 7 (−1 from b and e, 0 from a, d andg, 1 from j and c, 2
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from i andf , and 3 fromh.
• Squared width isw[2] = 21 (1 fromb and e, 0 from a, d andg, 1 from j and c, 4

from i andf , and 9 fromh.
• Squared animal width isW [2] = 72 = 49.

1.1. Moments of inertia

For all symmetric lattices (for instance the square and triangular lattices, but not the
hexagonal lattice, as it is not symmetric when put on the square lattice with a preferred
direction), the average widthw[1]

n is always zero (as are all odd moments), and is thus not
very interesting. A second moment of width is thus more interesting.

The definitions of width and length used here are slightly different quantities to those
normally studied, such as [15, 13, 20, 14], in which the authors look at the overall moments
of inertia I‖ and I⊥ of the animals around their centre of mass, or equivalently their radii
of gyrationR‖ andR⊥. The inertia moments and radii of gyration are related, as usual, by
I = nR2. It is found thatR⊥ ≈ nν⊥ andR‖ ≈ nν‖ with ν⊥ ≈ 1

2 and ν‖ ≈ 8
11 for largen.

These results mainly come from numerical work from series enumerations [15, 13, 20, 14],
with an exact result ofν⊥ = 1

2 coming from field theory [17].
For undirected animals, these are the only objects of possible interest. However, for

directed animals one has a second reference point, the origin, about which one can also
calculate moments of inertia. This is my reference point, as it makes the discussion of the
algorithm significantly easier. The two reference points can be related easily:

I‖ = l[2] − L[2]/n (5)

I⊥ = w[2] − W [2]/n. (6)

2. Algorithm

In [7] the basic algorithm used for enumerating directed animals is described. It is basically
a dynamic programming algorithm that calculates the number of animalsA(d, s, n) starting
from a base consisting of a diagonal line perpendicular to the preferred direction with sites
occupied according to a binary ‘signature’s with n sites (or whatever enumeration variable
is desired) to be added in the preferred direction from the diagonal, and starting at stated.
The stated is used to embed lattices such as the honeycomb on the square lattice. This
diagonal is hereafter referred to as themain diagonal.

Every A(d, s, n) with n > 0 can then be represented as a linear combination of other
A(δ, σ, ν) values, withν < n. Whenn reaches zero, the valueA(d, s, 0) is usually trivially
1. By storing intermediate values rather than recalculating, this algorithm becomes very
efficient.

For instance, on the square lattice (where there are no states, so the first variabled has
been omitted for clarity),

A(1, n) = A(1, n − 1) + A(2, n − 1) + A(3, n − 2). (7)

This represents a signature 1 (one site) causing there to be three options for the sites occupied
on the next diagonal perpendicular to the preferred direction. These three options are either
one site to the right, one site above, or both to the right and above sites. Various tricks
such as noting thatA(2, n) = A(1, n) are then used to further increase efficiency. This is
referred to later as ‘shifting down to normalize’.

This algorithm was used and described in [7] and [21] to enumerate animals on a variety
of lattices by number of sites or bonds, allowing or disallowing loops. It has also been used
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with slight modifications to enumerate by both site and bond perimeter, and could also be
used for high and low density percolation.

In order to calculate moments as well, the same basic approach is used. The difference
is that in this case the information about each sub-animal, previously denoted by the single
value A(d, s, n), now must also contain information about the moments for the animals
enumerated inA. Let us say that two moments are required in addition to the number of
animals. Call these momentsM1 andM2, respectively.

There are four properties that were studied here:
• The width (signed distance perpendicular to the preferred direction).
• The length (distance parallel to the preferred direction).
• The perimeter if one is enumerating by area, or the area if one is enumerating by

perimeter.
• The number of site loops.
No exact generating functions were found for length or area when enumerating by

perimeter.
If one uses units of 1/

√
2 of the lattice spacing, then all sites have integer widths and

lengths on the square lattice. On the triangular lattice, units of
√

3/2 for width and 1
2 for

length are used. For the purposes of this paper, the triangular lattice has been impressed
upon the square lattice in the same manner as [7], and thus can be considered to be a square
lattice with extra diagonal bonds joining each site to the site one above and to the right.
The preferred direction then allows animals to grow upwards, to the right, or to the upper
right. The analogue on the normal triangular lattice is to have the preferred direction allow
growth along three consecutive bonds from each site. The generating functions here are not
changed by the geometry used, although the interpretation of the units of width is slightly
different, accounting for the different units just mentioned.

One may define the width and length in many ways, of which two are perhaps the most
sensible: by maximum width/length for the animal and by average by site. A site average
definition is usually concerned with a radius of gyration. Determining the maximum width
of an animal is difficult if not impossible using the above algorithm, whereas the average
is straightforward. Using the average width and length is also convenient as it means that
the first moment is the centre of gravity, and the second moment is the radius of gyration.
These have strong physical significance. Note that for symmetrical animals the first moment
of the width should be trivially zero. There are also two ways of considering moments of
width and length: individually by site, or by whole animal.

More generally, there are two separate classes of properties: those that are properties
of the animal in its entirety (area, perimeter, site loops, and the ‘whole animal’ variety of
width and length), and others that are properties of individual sites (width, length).

Consider now the first class: those that are properties of the animal in its entirety. Let

Mm =
∑
a∈A

P m(a) (8)

whereA is now the set of all animals counted in the scalarA above, andP(a) is a scalar
property of the (sub)animala†. One now wants to obtain an equivalent to the recurrence
relation (7). Suppose that we are building up some set of animalsA and we use some sets
of animalsĀi in the process. Then the analogue of equation (7) forA is still

|A| =
∑

i

|Āi |. (9)

† P is any property, and should not be confused withP in section 1 which refers solely to the property of
perimeter.
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A similar equation for the moments follows:

Mm =
∑

i

∑
a∈Āi

P m(a + s) (10)

wheres are the extra sites added at the main diagonal. The form (and indeed existence) of
this recurrence relation depends on the definition ofP(a + s). In order for this method to
work, it must be possible to apply the method of recursive division to the moments of the
properties being studied as well as the previously done number of animals. There are two
steps in the recursive breakdown:

• Breaking the animal down into a signature line on the main diagonal (s) and the rest
of the animal (a ∈ Ai) which is described recursively. To make this practical, we want to
be able to say thatP(s + a) = P(a) + 1s .

• Shifting the animal one step in the preferred direction and the same number of steps
down the main diagonal to make the dynamic programming more efficient. To make this
practical we want to be able to say thatP(S(a)) = P(a) + 1S |a|.

The number of site loops in a directed animal is very easy to determine by looking at
each site individually. Each site in a directed animal must be to an allowed direction of
at least one occupied site—the site it ‘grew’ from. If it were possible for it to grow from
more then one site, then this implies that there is a loop. On the square lattice this means
both of the preceding sites must be occupied; on the triangular lattice it means at least two
must be occupied. From this perspective it is reasonable to have two definitions of loops
on the triangular lattice; those with two occupied previous neighbours, and those with all
three occupied previous neighbours. More conventional definitions (such as the cyclomatic
index) can be easily obtained as some linear combination of these two definitions. Hereafter
I have referred to the former definition ascommonloops and the latter asuncommonloops.
As a result of this site-wide property, one can say that1s is just the number of loop sites
in the signatures. The number of loops is not affected by shifting, so1S = 0.

Area is simpler still;1s = |s| and1S = 0.
For length, 1s = |s| representing the moments of the|s| sites which are on the

current main diagonal, and thus have a length (distance in the preferred direction which
is perpendicular to the main diagonal) of exactly one each. The shift of the rest of the
animala in the direction of the main diagonal of one unit means that1S = 1 to make up
for the future undercounting of the rest of theni sites of each animala in Ai . Length is
not affected by a transverse shift.

Perimeter is slightly harder to explain, as the most computationally reasonable method
of doing it is to define the perimeter of an animal portion to include those sites on the main
diagonal that could be occupied due to being able to grow out of previous sites, but happen
to not be in the current signature. With this definition then1s is the number of such sites
in the current signature, and1S = 0.

For width, 1s is the moment of width for each site in the signatures, with the origin
(zero width point) being the lowest occupied site on the main diagonal. Width is affected
by a shifting along the main diagonal. If the animal is not explicitly shifted down, then the
width origin has effectively moved 1/

√
2 times the lattice spacing as it grows horizontally,

so 1S = −1 using the unit system previously described. For every site the animal slides
down the main diagonal, the width origin has moved by a distance of

√
2 times the lattice

spacing, so1S must be increased by 2. Thus1S is twice the number of times shifted,
minus one.
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Then if we defineδ = 1s + ni1S equation (10) becomes

Mm =
∑

i

∑
a∈Āi

(P (a) + δ)m (11)

whence

M1 =
∑

i

M̄1i + δ|Āi | (12)

M2 =
∑

i

M̄2i + 2δM̄1i + δ2|Āi |. (13)

A similar process with slightly different equations and variables works when one
considers properties depending on each site individually rather than as part of an animal,
such as for the width and length when the moments are defined by

Mm =
∑
a∈A

∑
l∈a

P m(l) (14)

where l are the single sites (leaves) in a given animala. Then, a recurrence relation like
(11) will be

Mm =
∑

i

∑
a∈Āi

∑
l∈S(a)+s

P m(l) (15)

=
∑

i

(
|Āi |

∑
l∈s

P m(l) +
∑
a∈Āi

∑
l∈a

P m(S(l))

)
(16)

whereS(a) is the animal formed by shiftinga as required by the recurrence relation. Again,
we would like P(S(l)) = P(l) + 1S as defined previously. Defineγm to be

∑
l∈s P m(l).

Note thatγ1 is the same as1s as defined previously. Then

M1 =
∑

i

(|Āi |[γ1 + ni1S ] + M̄1i ) (17)

M2 =
∑

i

(|Āi |[γ2 + ni1
2
S ] + M̄2i + 21SM̄1i ) (18)

whereni is the number of sites in each of the animals in setĀi .
These recurrence relations can then be used in the same way as the previous simpler

relations involving justA. Note that the memory requirement is increased only linearly in
the number of moments, as there are now three numbers (|Ai |, M1i , M2i) to keep track of
where there was previously only one.

3. Results

After calculating the series for these moments, they were analysed via the method of
algebraic approximants [18] and in some cases produced an exact algebraic solution to
the generating function. These exact solutions are given below, together with an asymptotic
expansion for the moment (per animal).

The vast majority of series obtained did not have an easily discoverable algebraic
generating function. Some of these series have been analysed by differential approximants
and other methods [22]. They are not included here.

Note that the following solutions come from empirical observations that the first 40 terms
(for the square lattice) and the first 26 terms (for the triangular lattice) satisfy the given
equations. Since these approximants are generated from far fewer terms, it is exceedingly
unlikely that they are incorrect, but this is not by any means a formal proof.
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Each of the generating functions here is presented as a quadratic, which of course
gives two different generating functions. There is no difficulty in choosing the correct
solution, however, as the non-physical solution is usually obviously wrong (for instance,
being negative inside the radius of convergence).

The asymptotic values are then obtained by breaking the generating function into a
linear combination of terms likef (x) = ∑

α Cα(1− µx)−α where 1/µ is the critical point,
then using the relation that if

∞∑
n=0

anx
n = (1 − µx)−α (19)

then from the binomial theorem and equation (6.1.47) of [23],

an = µn nα−1

0(α)

[
1 + α(α − 1)

2n
+ α(α − 1)(α − 2)(3α − 1)

24n2
+ O(n−3)

]
. (20)

For a given lattice topology, the critical point must be the same for all moments
considered, as it is clear that each moment (per animal) has a polynomial upper bound.
For instance, for an animal of sizen sites on the square lattice, the perimeter will clearly
be bounded byn+ 1, the number of loops byn, and the width and length byn. The higher
order moments will be bounded by a similar polynomial. For directed animals on the square
lattice, µ = 3; for directed animals on the triangular lattice,µ = 4 [1]. These asymptotic
expressions can then be divided by the asymptotic expression for the number of animals to
get an asymptotic values for the moment per animal.

The results are given in table 1 for the square lattice and in table 2 for the triangular
lattice, giving for each moment the generating function, the asymptotic expansion and the per
animal asymptotic expansion. The number of directed animals is also given for reference.

4. Comments

The result for the average perimeter on the square lattice confirms Duarte’s conjecture
[9, 10] that the average perimeter was 3n/4 + o(1). It is interesting in that it indicates that
the perimeter of the animal grows linearly with size, in a manner characteristic of one-
dimensional, hole ridden, or spread out objects. This may be compared to holeless compact
two-dimensional objects, where the perimeter grows characteristically like

√
n.

The expression forR⊥ on the square lattice confirmsν⊥ = 1
2 as expected in [13, 15] and

proved in [17], and the expectation in [14] that the first correction term forR⊥ is analytic
is confirmed by the exact value (−5/16n). As expected by universality,ν⊥ = 1

2 also on the
triangular lattice. It is interesting that the exact formula forR⊥ on the triangular lattice is
so simple. These width formulae, though originally derived empirically, are proved using
q-series and generalizedq-series later in this paper.

From the expression for the average and the average squared number of loops on the
square lattice, one can get the variance for the number of loopsH [1] in an animal ofn sites:

σ 2 = 7n

54

(
1 − 375

8n
+ O(n−2)

)
. (21)

5. Proving these exact results

There are many new results in tables 1 and 2 that may be analytically proved, and should be
easier to do so now that the answer is known. I have only proved the four width equations
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Table 1. Moments for directed animals on the square lattice.

Moment Generating functionf Expansion Per animal

Number (3x − 1)f 2 + (3x − 1)f cn = 3n 1√
3π

n− 1
2 1

+x = 0 (1 − 1
16n + 13

512n2 + O(n−3))

Perimeter x(x + 1)3(3x − 1)3f 2 P
[1]
n cn = 3

43n 1√
3π

n
1
2 P

[1]
n = 3

4n

+(x2 + x + 1) (1 + 115
48n − 2645

1536n2 + O(n−3)) (1 + 59
24n − 153

96n2 + O(n−3))

×(x + 1)2(3x − 1)3f

+x(2 − 6x − 5x2 + 12x3

+13x4 + 12x5 + 9x6) = 0

Width (inertia) (x + 1)(3x − 1)5f 2 w
[2]
n cn = 4

93n 1√
3π

n
3
2 w

[2]
n = 4

9n2

+4x4 = 0 (1 − 15
16n + 17

512n2 + O(n−3)) (1 − 7
8n

− 3
64n2 + O(n−3))

Width (centroid) (x + 1)3(3x − 1)7f 2 W
[2]
n cn = 2

93n 1√
3π

n
5
2 W

[2]
n = 2

9n3

+4x4(1 + x + 3x2)2 = 0 (1 − 9
16n + 281

512n2 + O(n−3)) (1 − 9
8n

+ 29
64n2 + O(n−3))

Inertia I⊥ = 2
9n2

(1 − 5
8n

− 35
64n2 + O(n−3))

Radius of gyration R⊥ =
√

2
3

√
n

(1 − 5
16n − 305

512n2 + O(n−3))

Loops (x + 1)(3x − 1)3f 2 H
[1]
n cn = 1

93n 1√
3π

n
1
2 H

[1]
n = 1

9n

−(x + 1)(3x − 1)3f (1 − 65
16n + 1357

512n2 + O(n−3)) (1 − 4
n

+ 19
8n2 + O(n−3))

+x4(4x2 + 2x − 1) = 0

Squared loops (x + 1)3(3x − 1)5f 2 H
[2]
n cn = 1

813n 1√
3π

n
3
2 H

[2]
n = 1

81n2

+(x − 1)(2x2 + 4x + 1) (1 + 39
16n − 17443

512n2 + O(n−3)) (1 + 5
2n

− 543
16n2 + O(n−3))

×(x + 1)2(3x − 1)5f

+x4(−1 + 4x + 10x2 − 52x3

+27x4 + 48x5 − 108x6

+144x7 + 252x8) = 0

so far. There are many ways that have been used to solve such equations analytically, such
as

• bijections to algebraic-type languages (DSV) and relatedq series [6, 24, 3, 5, 4, 25];
• equivalence to other physical or mathematical systems [2, 26–28];
• the Temperley method (splitting up the generating function into smaller generating

functions for which one can write a recurrence relation) [29–32];
• analytical transfer matrices [13, 20];
• heaps of pieces (a bijective type approach) [24, 33].
A much longer and more detailed list is given in [34].
The method of a bijection to aguingois† tree [6] works in a straightforward manner

for proving the series associated with width, as the bijection between directed animals and
guingois trees in [6] preserves width, though not length. This can be solved using a technique
similar toq-series, except with more than one ‘q ’-type variable. One is in principle then able

† French for slightly asymmetric or skew-whiff.
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Table 2. Moments for directed animals on the triangular lattice.

Moment Generating functionf Expansion Per animal

Number (4x − 1)(f 2 + f ) + x = 0 cn = 4n 1
2
√

π
n− 1

2 1

(1 − 1
8n

+ 1
128n2 + O(n−3))

Width (inertia) (4x − 1)5f 2 + 4x4 = 0 w
[2]
n cn = 1

34n 1
2
√

π
n

3
2 w

[2]
n = 1

3n(n − 1)

(1 − 9
8n

+ 17
128n2 + O(n−3))

Width (centroid) (4x − 1)7f 2 + 4x4(x + 1)2 = 0 W
[2]
n cn = 1

64n 1
2
√

π
n

5
2 W

[2]
n = 1

6n2(n − 1)

(1 − 9
8n

+ 17
128n2 + O(n−3))

Inertia I⊥ = 1
6n(n − 1)

Radius of gyration R⊥ = 1√
6

√
n − 1

Loops (common) (4x − 1)3f 2 − (4x − 1)3f H
[1]
n cn = 1

44n 1
2
√

π
n

1
2 H

[1]
n = 1

4n

+(9x − 2)x3 = 0 (1 − 21
8n

+ 137
128n2 + O(n−3)) (1 − 5

2n
+ 3

4n2 + O(n−3))

to get an expression for the generating function in terms of three variables, whose powers
representn, the number of sites,W [1]

n , the average width, andw[2]
n , the moment of inertia.

It is difficult to get an explicit expression to the coupled set of equations produced, though
with partial differentiation, it is straightforward (though rather complex algebraically) to
prove the lesser result of the equations for widths.

The equations forWn-type terms are the following generalizations of equation set (7)
in [6] to q-series:

G(x, q) = 1 + xqG(xq, q) + x

q
G

(
x

q
, q

)
+ x2E(xq, q)G

(
x

q
, q

)
(22)

E(x, q) = S(x, q)(1 + xqE(xq, q)) (23)

S(x, q) = 1 + x2qS(xq, q)S(s, q)(1 + xq2E(xq2, q)) (24)

whereG(x, q) is the final generating function. The power ofx gives the number of sites,
and the power ofq gives the width of the animal. Note that it differs from the generating
functions used previously in this paper by a factor ofx due to slightly different conventions
used in [6]. E is the generating function for trees that never go right of the root, andS is
the generating function for those trees counted inE that return to directly below the root.
See [6] for a proof thatG is the generating function for directed animals.

The generating functions forWncn can then be obtained from the equation

∑
n

cnW
[i]
n xn = x

(
q

∂

∂q

)i

q=1

G(x, q). (25)

The extra power ofx is due to the fact that in [6] the number of sites in the animal is
defined so as not to include the initial site, and thus is one fewer than in my definition.

The equations needed forw-type terms are much more complex, requiringi + 1 vari-
ables to get theith moment. If the power ofx gives the number of sites, the power ofm

gives the widthw[1] , and the power ofI gives the moment of inertia around the preferred
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direction,w[2] :

G(I, m, x) = 1 + mxIG(I, mI 2, mIx) + m−1xIG(I, mI−2, m−1Ix)

+x2I 2G(I, mI−2, m−1Ix)E(I, mI 2, mIx) (26)

E(I, m, x) = S(I, m, x)(1 + mxIE(I, mI 2, mIx)) (27)

S(I, m, x) = 1 + x2mIS(I, mI 2, mIx)S(I, m, x)(1 + m2I 4xE(I, mI 4, m2I 4x)). (28)

Again, this set of equations need not be solved in its entirety to get a useful generating
function: ∑

n

cnw
[2]
n xn = x

(
∂G

∂I

)
I=m=1

. (29)

Similar sets of equations can be found for the triangular lattice, by adding an extra
term to the equations forG andS representing a tree formed by taking the site which is a
diagonal bond directly downwards (in the notation used in [6]) from the starting point, but
not to the left or right. If a site to the left or right is taken, then the diagonal site’s possible
occupancy will be automatically taken care of by the existing equations. For justWn one
obtains

G(x, q) = 1 + xqG(xq, q) + x

q
G

(
x

q
, q

)
+ x2E(xq, q)G

(
x

q
, q

)
+ xG(x, q) (30)

E(x, q) = S(x, q)(1 + xqE(xq, q)) (31)

S(x, q) = 1 + x2qS(xq, q)S(s, q)(1 + xq2E(xq2, q)) + xS(x, q) (32)

and for bothWn andwn one obtains

G(I, m, x) = 1 + mxIG(I, mI 2, mIx) + m−1xIG(I, mI−2, m−1Ix)

+x2I 2G(I, mI−2, m−1Ix)E(I, mI 2, mIx) + xG(I, m, x) (33)

E(I, m, x) = S(I, m, x)(1 + mxIE(I, mI 2, mIx)) (34)

S(I, m, x) = 1 + x2mIS(I, mI 2, mIx)S(I, m, x)(1 + m2I 4xE(I, mI 4, m2I 4x))

+xS(I, m, x). (35)

All four empirically derived width formulae were verified via partial derivatives of the
aboveq-series with the help of the computer based algebraic packageMaple.
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